
angle of 180 degrees". We encode these
actions as individual "states", which are
then chained together into a state
machine. We then continuously poll our
state machine, checking whether it has
completed its current state, if so,
moving on to the next state. These state
machines make our autonomous extremely
easy to program. A sample autonomous is
shown below.

```java 
private StateMachine auto_depotSample = 
getStateMachine(autoStage) 
            
.addNestedStateMachine(auto_setup) 
//common states to all autonomous 
            
.addMineralState(mineralStateProvider, 
//turn to mineral, depending on mineral 
                    () -> 
robot.rotateIMU(39, TURN_TIME), //turn 
left 
                    () -> true, //don't 
turn if mineral is in the middle 
                    () -> 
robot.rotateIMU(321, TURN_TIME)) //turn 
right 
            
.addMineralState(mineralStateProvider, 
//move to mineral 
                    () -> 
robot.driveForward(true, .604, 
DRIVE_POWER), //move more on the sides 
                    () -> 
robot.driveForward(true, .47, 
DRIVE_POWER), //move less in the middle 
                    () -> 
robot.driveForward(true, .604, 
DRIVE_POWER)) 
            
.addMineralState(mineralStateProvider, 
//turn to depot 
                    () -> 
robot.rotateIMU(345, TURN TIME),

angle of 180 degrees". We encode these 
actions as individual "states", which are 
then chained together into a state 
machine. We then continuously poll our 
state machine, checking whether it has 
completed its current state, if so, 
moving on to the next state. These state 
machines make our autonomous extremely 
easy to program. A sample autonomous is 
shown below. 
 
```java 
private StateMachine auto_depotSample =
getStateMachine(autoStage)

.addNestedStateMachine(auto_setup)
//common states to all autonomous

.addMineralState(mineralStateProvider,
//turn to mineral, depending on mineral
 () ->
robot.rotateIMU(39, TURN_TIME), //turn
left
 () -> true, //don't
turn if mineral is in the middle
 () ->
robot.rotateIMU(321, TURN_TIME)) //turn
right

.addMineralState(mineralStateProvider,
//move to mineral
 () ->
robot.driveForward(true, .604,
DRIVE_POWER), //move more on the sides
 () ->
robot.driveForward(true, .47,
DRIVE_POWER), //move less in the middle
 () ->
robot.driveForward(true, .604,
DRIVE_POWER))

.addMineralState(mineralStateProvider,
//turn to depot
 () ->
robot.rotateIMU(345, TURN TIME),

allow the robot to make precise
turns. We also use the IMU to
determine whether our robot is
tipping, so that we can perform
corrective action to avoid us from
completely tipping over our robot.
Motor encoders - Motor encoders
allow us to determine how far our
robot has moved or what position its
subsystems are at, which is used
alongside a PID Control loop to allow
the robot to make precise
movements. Every subsystem on our
robot uses encoders.

The drivetrain encoders allow
us to determine how far our
robot has moved. We also look
at the differences between
encoder values between both
sides of our drivetrain in order
to ensure that our robot is
driving in a straight line. Along
with a PID loop, this allows us
to make precise lateral
movements. We use these
especially during autonomous,
to ensure that our robot is
driving the same distance and
direction between each run.
These are also used during
teleop, to force the robot to
drive in a straight line rather
than veer to the side.
The superman arm encoders
allow us to determine the
current position of the arm.
Using a PID contol loop, we can
set a target position for the
motors and then the arm will

⇑ ⇓ preview html html-tex md H ⇓ © 2015–2018
Roman Parpalak

mailto:roman%40written.ru

